metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetrabutylammonium bis[4,4'-dimethyl-2.2'-(3.7-dimethyl-1H-4.2.1-benzothiazasiline-1,1-divl)dibenzenethiolato]vanadium(III) acetonitrile tetrasolvate

Yi-Fang Tsai,^a Hua-Fen Hsu,^a* Kuei-Fang Hsu^a and Ju-Chun Wang^b

^aDepartment of Chemistry, National Cheng Kung University, Tainan 701, Taiwan, and ^bDepartment of Chemistry, Soochow University, Taipei, Taiwan Correspondence e-mail: konopka@mail.ncku.edu.tw

Received 27 April 2010; accepted 8 June 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.053; wR factor = 0.144; data-to-parameter ratio = 22.3.

In the title compound, $[N(C_4H_9)_4][V(C_{23}H_{21}NS_3Si)_2]$. 4CH₃CN, the V^{III} atom (site symmetry $\overline{1}$) is coordinated by two N,S,S'-tridentate 4,4'-dimethyl-2,2'-(3,7-dimethyl-1H-4,2,1-benzothiazasiline-1,1-diyl)dibenzenethiolate ligands in a distorted *trans*-VN₂S₄ octahedral geometry. The complete cation is generated by crystallographic twofold symmetry, with the V atom lying on the rotation axis. The unusual ligand arose from nucleophilic attack on the coordinated nitrile by the thiolate precursor and reduction of nitrile to the imidate.

Related literature

For background to vanadium thiolate chemistry, see: Rehder (2008); Crans et al. (2004); Eady (2003); Janas & Sobota (2005); Ye et al. (2010); Tsai et al. (2007). For further mechanistic information, see: Block et al. (1989). For related structures, see: Zhu et al. (1997, 2002).

Experimental

Crystal data

$\begin{array}{l} (C_{16}H_{36}N)[V(C_{23}H_{21}NS_{3}Si)_{2}] \\ + 4C_{2}H_{3}N \\ M_{r} = 1328.97 \\ Monoclinic, C2/c \\ a = 27.0867 (16) \\ b = 14.6525 (9) \\ b \\ c = 22.0590 (13) \\ b \end{array}$	$\beta = 126.359 (1)^{\circ}$ $V = 7050.5 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.40 \text{ mm}^{-1}$ T = 200 K $0.50 \times 0.50 \times 0.40 \text{ mm}$
c = 22.0590 (13) Å Data collection	$0.50 \times 0.50 \times 0.40 \text{ mm}$

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004)

 $T_{\min} = 0.490, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	396 parameters
wR(F^2) = 0.144	H-atom parameters constrained
S = 1.05	$\Delta a = -0.66 \text{ e}^{-3}$
S = 1.05 8840 reflections	$\Delta \rho_{\text{max}} = 0.66 \text{ e A}^{-5}$ $\Delta \rho_{\text{min}} = -0.44 \text{ e } \text{\AA}^{-3}$

26980 measured reflections

 $R_{\rm int} = 0.063$

8840 independent reflections

5635 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å).

V1-N1	2.188 (2)	V1-S2	2.4617 (7)
V1-S1	2.4161 (6)		

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Science Council in Taiwan (NSC 96-2113-M- 006-011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5425).

References

- Block, E., Kang, H., Ofori-Okai, G. & Zubieta, J. (1989). Inorg. Chim. Acta, 156, 27-28.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crans, D. C., Smee, J. J., Gaidamauskas, E. & Yang, L. (2004). Chem. Rev. 104, 849-902.
- Eady, R. R. (2003). Coord. Chem. Rev. 237, 23-30.
- Janas, Z. & Sobota, P. (2005). Coord. Chem. Rev. 249, 2144-2155.
- Rehder, D. (2008). Bioinorganic Vanadium Chemistry. New York: John Wiley & Sons.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsai, Y.-F., Huang, G.-S., Yang, C.-I., Tsai, H.-L., Liu, Y.-H., Kuo, T.-S. & Hsu, H.-F. (2007). Inorg. Chem. 46, 10467-10469.
- Ye, S., Neese, F., Ozarowski, A., Smirnov, D., Krzystek, J., Telser, J., Liao, J.-H., Hung, C.-H., Chu, W.-C., Tsai, Y.-F., Wang, R.-C., Chen, K.-Y. & Hsu, H.-F. (2010). Inorg. Chem. 49, 977-988.
- Zhu, H., Chen, C., Zhang, X., Liu, Q., Liao, D. & Li, L. (2002). Inorg. Chim. Acta, 328, 96-104.
- Zhu, H.-P., Deng, Y.-H., Huang, X.-Y., Chen, C.-N. & Liu, Q.-T. (1997). Acta Cryst. C53, 692-693.

Acta Cryst. (2010). E66, m844 [doi:10.1107/S1600536810022014]

Tetrabutylammoniumbis[4,4'-dimethyl-2,2'-(3,7-dimethyl-1*H*-4,2,1-benzothiazasiline-1,1-diyl)dibenzenethiolato]vanadium(III) acetonitrile tetrasolvate

Y.-F. Tsai, H.-F. Hsu, K.-F. Hsu and J.-C. Wang

Comment

Vanadium thiolate chemistry has been drawing much attention due to its biological relevance as well as its medical application (Rehder, 2008; Crans *et al.*, 2004). For example, alternative nitrogenase is proposed to contain a [Fe₇VS₉] cofactor, where V site likely binds to three sulfides, His442 and homocitrate (Eady, 2003). To elucidate the role of vanadium in the enzyme, it is essential to understand fundamental chemistry of vanadium, particularly in a S-rich ligation environment (Janas & Sobota, 2005). Thus, we have been exploring the reactions of vanadium ion with thiolato containing ligands (Ye *et al.*, 2010; Tsai *et al.*, 2007). At this work, the reaction of [VCl₃THF₃] with H₃L1 [H₃L1 = HSi(5-Me–C₆H₄-2-SH)₃] and three equivalents of nBu-Li in CH₃CN generated a deep purple solution. The addition of the cation, [N(C₄H₉)₄]Br, to the reaction mixture yielded a crystalline solid of the title compound (**I**).

The molecular structure of the anion in (I) is shown in Fig 1. It consists a V^{III} ion coordinated to two L2 ligands [L2 = Si{CH₃(5-Me-C₆H₄-2-S)CN} (5-Me-C₆H₄-2-S)₂]. L2 ligand has a S2N donor set that contains two benzenethiolates and one thioimidate group. The formation of a thioimidate group in L2 ligand upon the reaction is likely a consequence of nucleophilic attack on the coordinated nitrile by thiolate and reduction of nitrile to the imidate. Similar chemistry was demonstrated in a rhenium complex with thiolate ligands (Block *et al*., 1989). The V^{III} ion lies on the inversion centre and forms a normal octahedral geometry with a S4N2 ligation environment, four S atoms from thiolate groups and two N atoms from thioimidate groups. Two N donor atoms of thioimidate groups are in *trans* positions.

The bond lengths and bond angles in compound (I) are shown in Table 1. The V—S distances of 2.416 (1) Å and 2.462 (1) Å are close to those of reported six-coordinate V^{III} thiolate complexes (Ye *et al.*, 2010; Zhu *et al.*, 2002; Zhu *et al.*, 1997).

The packing diagrams of compound (I) are shown in Fig 2. There is no interaction observed between molecules. The methyl groups on the phenyl rings of the ligands probably prevent the occurrence of inter-molecular π - π stacking interactions. The shortest distance between centers of two phenyl rings is 5.181 (2) Å.

Experimental

A THF solution of VCl₃(THF)₃ (0.094 g, 0.25 mmol) was added to a acetonitrile solution (10 ml) of HSi(5-Me–C₆H₄-2-SH)₃ (0.202 g, 0.51 mmol) and n-BuLi (0.098 g, 1.53 mmol) to generate a deep purple solution. The solution was concentrated and layered with $[N(C_4H_9)_4]Br$ (0.080 g, 0.25 mmol) in acetonitrile solution (5 ml). After one week, deep purple blocks of (I) were obtained.

Refinement

H atoms were generated geometrically, with C—H_{methyl} = 0.96 Å; C—H_{aryl} = 0.93 Å; U_{iso}H_{methyl} = 1.5U_{eq}(C_{methyl}); U_{iso}H_{aryl} = 1.2U_{eq}(C_{aryl}). In case of the CH₃ group, the positional parameters of the hydrogens were constrained by the SHELXL-97 command to the idealized tetrahedral geometry by the command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1. The anion in (I) with displacement ellipsoids drawn at the 35 % probability level. Unlabelled atoms are generated by the symmetry operation (1-x, -y, 1-z).

Fig. 2. The packing diagram of (I): A view of the sheet parallel to the ac plane, H atoms have been omitted for clarity.

Fig. 3. View of the packing in (I) approximately down the a axis, acetonitrile molecules and H atoms have been omitted for clarity.

Tetrabutylammonium bis[4,4¹-dimethyl-2,2¹-(3,7-dimethyl-1*H*- 4,2,1-benzothiazasiline-1,1-diyl)dibenzenethiolato]vanadium(III) acetonitrile tetrasolvate

Crystal data

$(C_{16}H_{36}N)[V(C_{23}H_{21}NS_3Si)_2] \cdot 4C_2H_3N$
$M_r = 1328.97$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 27.0867 (16) Å
b = 14.6525 (9) Å
c = 22.0590 (13) Å
$\beta = 126.359 (1)^{\circ}$
$V = 7050.5 (7) \text{ Å}^3$
Z = 4

F(000) = 2824 $D_x = 1.252 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5232 reflections \theta = 2.3-28.1\circ \mu = 0.40 mm^{-1} T = 200 K Block, deep purple 0.50 \times 0.50 \times 0.40 mm

Data collection

Bruker	APEXII	CCD	area-detector

8840 independent reflections

diffractometer

Radiation source: fine-focus sealed tube	5635 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.063$
ϕ and ω scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -33 \rightarrow 36$
$T_{\min} = 0.490, \ T_{\max} = 1.000$	$k = -19 \rightarrow 19$
26980 measured reflections	$l = -28 \rightarrow 29$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.144$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0702P)^2 + 1.1431P]$ where $P = (F_o^2 + 2F_c^2)/3$
8840 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
396 parameters	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$
0 constraints	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
V1	0.5000	0.0000	0.5000	0.02112 (15)
Si1	0.47274 (3)	0.21699 (5)	0.46284 (4)	0.02117 (16)
S1	0.57178 (3)	0.05741 (5)	0.47806 (4)	0.02504 (16)
S2	0.53127 (3)	0.09662 (5)	0.60866 (4)	0.02710 (16)
S3	0.32852 (3)	0.19171 (5)	0.31598 (4)	0.03403 (18)
N1	0.43811 (10)	0.10819 (14)	0.42448 (12)	0.0222 (5)
N2	0.5000	0.1548 (2)	0.2500	0.0255 (7)
N3	0.2424 (3)	0.3201 (5)	0.3810 (3)	0.182 (4)
N4	0.2660 (2)	0.5583 (4)	0.1270 (3)	0.125 (2)

C11	0.55730 (12)	0.23091 (18)	0.51487 (14)	0.0237 (5)
C12	0.58127 (12)	0.31516 (19)	0.55119 (15)	0.0271 (6)
H12A	0.5547	0.3575	0.5489	0.033*
C13	0.64280 (13)	0.3384 (2)	0.59036 (16)	0.0294 (6)
C14	0.68221 (13)	0.2732 (2)	0.59387 (16)	0.0316 (6)
H14A	0.7236	0.2868	0.6193	0.038*
C15	0.66030 (13)	0.1887 (2)	0.55997 (16)	0.0298 (6)
H15A	0.6874	0.1460	0.5637	0.036*
C16	0.59806 (12)	0.16615 (18)	0.52012 (14)	0.0242 (5)
C17	0.66594 (14)	0.4308 (2)	0.62743 (18)	0.0395 (7)
H17A	0.6356	0.4595	0.6304	0.059*
H17B	0.6737	0.4681	0.5982	0.059*
H17C	0.7032	0.4232	0.6772	0.059*
C21	0.45354 (12)	0.24289 (18)	0.52897 (15)	0.0232 (5)
C22	0.41580 (12)	0.31461 (19)	0.52041 (16)	0.0274 (6)
H22A	0.3971	0.3513	0.4778	0.033*
C23	0.40540 (13)	0.3326 (2)	0.57407 (17)	0.0320 (7)
C24	0.43478 (14)	0.2781 (2)	0.63787 (17)	0.0346 (7)
H24A	0.4294	0.2902	0.6750	0.042*
C25	0.47203 (14)	0.20590 (19)	0.64746 (16)	0.0308 (6)
H25A	0.4908	0.1699	0.6905	0.037*
C26	0.48153 (13)	0.18693 (18)	0.59321 (15)	0.0253 (6)
C27	0.36400 (16)	0.4096 (2)	0.5628 (2)	0.0491 (9)
H27A	0.3652	0.4161	0.6070	0.074*
H27B	0.3228	0.3966	0.5202	0.074*
H27C	0.3776	0.4653	0.5541	0.074*
C31	0.43356 (12)	0.29874 (18)	0.38172 (15)	0.0235 (5)
C32	0.46213 (13)	0.37586 (18)	0.37750 (16)	0.0276 (6)
H32A	0.5037	0.3847	0.4153	0.033*
C33	0.43175 (14)	0.43956 (19)	0.31998 (17)	0.0322 (6)
C34	0.36973 (15)	0.4254 (2)	0.26367 (17)	0.0359 (7)
H34A	0 3481	0 4678	0 2250	0.043*
C35	0 33984 (14)	0 3497 (2)	0 26423 (16)	0.0336(7)
H35A	0.2985	0 3406	0.2256	0.040*
C36	0.37176 (13)	0 28682 (19)	0 32289 (15)	0.0278(6)
C37	0.46425 (16)	0.5222 (2)	0.3187(2)	0.0464 (8)
H37A	0.5077	0.5119	0.3508	0.070*
H37B	0.4547	0.5745	0.3362	0.070*
H37C	0.4510	0.5329	0.2682	0.070*
C41	0.34431 (13)	0.01434 (19)	0.34091 (16)	0.0304 (6)
H41A	0.3674	-0.0339	0.3763	0.046*
H41B	0.3359	-0.0011	0.2933	0.046*
H41C	0.3064	0.0224	0.3348	0.046*
C42	0.38056 (12)	0.10112 (18)	0.36956 (15)	0.076 (6)
C51	0.58030(12)	0.3592(2)	0.35930 (13)	0.0250(0) 0.0455(8)
H51A	0.6021	0.3372 (2)	0.4720	0.0400 (0)
H51B	0.6849	0.3804	0.3983	0.000*
H51C	0.7059	0.3068	0.3703	0.008*
C52	0.7037	0.3000	0.30858 (17)	0.000°
0.52	0.01364 (14)	0.3330 (2)	0.39838 (17)	0.0557(7)

H52A	0.6092	0.3133	0.4368	0.040*
H52B	0.5883	0.3871	0.3745	0.040*
C53	0.59212 (15)	0.2588 (2)	0.34048 (17)	0.0363 (7)
H53A	0.6235	0.2122	0.3602	0.044*
H53B	0.5855	0.2840	0.2956	0.044*
C54	0.53288 (13)	0.21578 (19)	0.31999 (15)	0.0289 (6)
H54A	0.5051	0.2642	0.3119	0.035*
H54B	0.5420	0.1797	0.3624	0.035*
C55	0.31405 (18)	0.0422 (3)	0.1459 (2)	0.0661 (11)
H55A	0.2820	0.0107	0.1438	0.099*
H55B	0.3003	0.0574	0.0958	0.099*
H55C	0.3243	0.0972	0.1748	0.099*
C56	0.36886 (16)	-0.0172 (2)	0.18187 (19)	0.0450 (8)
H56A	0.3578	-0.0732	0.1531	0.054*
H56B	0.3819	-0.0332	0.2320	0.054*
C57	0.42201 (15)	0.0271 (2)	0.18751 (18)	0.0384 (7)
H57A	0.4069	0.0578	0.1405	0.046*
H57B	0.4507	-0.0197	0.1956	0.046*
C58	0.45487 (14)	0.09565 (19)	0.25166 (16)	0.0302 (6)
H58A	0.4247	0.1346	0.2490	0.036*
H58B	0.4766	0.0630	0.2991	0.036*
C61	0.1622 (2)	0.2502 (4)	0.2518 (2)	0.0830 (15)
H61A	0.1721	0.2621	0.2173	0.124*
H61B	0.1229	0.2761	0.2324	0.124*
H61C	0.1611	0.1855	0.2577	0.124*
C62	0.2073 (3)	0.2900 (4)	0.3223 (3)	0.106 (2)
C63	0.18371 (17)	0.6328 (3)	0.0028 (2)	0.0598 (10)
H63A	0.1721	0.6895	0.0129	0.090*
H63B	0.1487	0.5934	-0.0250	0.090*
H63C	0.1990	0.6443	-0.0261	0.090*
C64	0.22959 (19)	0.5909 (3)	0.0711 (3)	0.0625 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0260 (3)	0.0229 (3)	0.0141 (3)	0.0032 (3)	0.0117 (3)	0.0016 (2)
Si1	0.0233 (4)	0.0242 (4)	0.0162 (3)	0.0026 (3)	0.0117 (3)	0.0012 (3)
S1	0.0306 (4)	0.0265 (3)	0.0223 (3)	0.0039 (3)	0.0181 (3)	0.0017 (3)
S2	0.0351 (4)	0.0260 (4)	0.0160 (3)	0.0032 (3)	0.0129 (3)	0.0003 (3)
S3	0.0243 (4)	0.0312 (4)	0.0345 (4)	0.0040 (3)	0.0108 (3)	0.0033 (3)
N1	0.0252 (12)	0.0269 (12)	0.0144 (10)	0.0021 (9)	0.0116 (10)	0.0003 (9)
N2	0.0369 (19)	0.0229 (16)	0.0215 (16)	0.000	0.0198 (15)	0.000
N3	0.119 (5)	0.178 (6)	0.110 (4)	0.088 (4)	-0.009 (4)	-0.069 (4)
N4	0.099 (3)	0.198 (6)	0.102 (4)	0.087 (4)	0.073 (3)	0.093 (4)
C11	0.0256 (14)	0.0292 (14)	0.0162 (13)	0.0025 (11)	0.0124 (11)	0.0034 (11)
C12	0.0289 (15)	0.0309 (15)	0.0209 (13)	0.0012 (11)	0.0144 (12)	0.0000 (11)
C13	0.0311 (15)	0.0346 (16)	0.0215 (14)	-0.0039 (12)	0.0151 (13)	-0.0008 (12)
C14	0.0260 (15)	0.0408 (17)	0.0239 (14)	-0.0023 (12)	0.0126 (13)	0.0037 (13)

C15	0.0288 (15)	0.0338 (16)	0.0263 (15)	0.0077 (12)	0.0160 (13)	0.0083 (12)
C16	0.0266 (14)	0.0298 (14)	0.0160 (13)	0.0022 (11)	0.0126 (12)	0.0041 (11)
C17	0.0369 (18)	0.0411 (18)	0.0369 (18)	-0.0092 (14)	0.0199 (15)	-0.0101 (15)
C21	0.0239 (14)	0.0263 (14)	0.0209 (13)	-0.0046 (10)	0.0141 (12)	-0.0034 (11)
C22	0.0271 (14)	0.0278 (14)	0.0275 (15)	-0.0012 (11)	0.0162 (13)	-0.0039 (12)
C23	0.0341 (16)	0.0327 (16)	0.0370 (17)	-0.0072 (12)	0.0253 (15)	-0.0137 (13)
C24	0.0466 (19)	0.0355 (16)	0.0354 (17)	-0.0084 (13)	0.0319 (16)	-0.0125 (13)
C25	0.0436 (17)	0.0271 (15)	0.0258 (15)	-0.0093 (12)	0.0229 (14)	-0.0054 (12)
C26	0.0322 (15)	0.0238 (14)	0.0238 (14)	-0.0052 (11)	0.0186 (13)	-0.0060 (11)
C27	0.050 (2)	0.050 (2)	0.056 (2)	0.0040 (16)	0.036 (2)	-0.0153 (18)
C31	0.0277 (14)	0.0261 (14)	0.0188 (13)	0.0050 (11)	0.0149 (12)	0.0001 (11)
C32	0.0318 (15)	0.0284 (15)	0.0248 (14)	0.0047 (11)	0.0179 (13)	0.0002 (11)
C33	0.0439 (18)	0.0263 (15)	0.0272 (15)	0.0069 (13)	0.0215 (14)	0.0028 (12)
C34	0.0473 (19)	0.0285 (16)	0.0236 (15)	0.0116 (13)	0.0164 (15)	0.0064 (12)
C35	0.0324 (16)	0.0293 (16)	0.0239 (15)	0.0079 (12)	0.0084 (13)	0.0001 (12)
C36	0.0319 (15)	0.0270 (14)	0.0232 (14)	0.0052 (11)	0.0156 (13)	0.0004 (11)
C37	0.052 (2)	0.0323 (17)	0.051 (2)	0.0036 (15)	0.0284 (18)	0.0137 (16)
C41	0.0319 (16)	0.0314 (16)	0.0246 (15)	-0.0008 (12)	0.0149 (13)	-0.0018 (12)
C42	0.0286 (15)	0.0304 (15)	0.0192 (13)	0.0030 (11)	0.0149 (12)	-0.0006 (11)
C51	0.047 (2)	0.0407 (19)	0.0371 (18)	0.0006 (15)	0.0188 (17)	0.0009 (15)
C52	0.0411 (18)	0.0249 (15)	0.0301 (16)	-0.0016 (12)	0.0184 (15)	-0.0026 (12)
C53	0.0438 (18)	0.0357 (17)	0.0312 (16)	-0.0070 (13)	0.0233 (15)	-0.0050 (13)
C54	0.0394 (17)	0.0278 (15)	0.0221 (14)	0.0005 (12)	0.0196 (13)	-0.0033 (11)
C55	0.049 (2)	0.084 (3)	0.060 (3)	-0.003 (2)	0.030 (2)	0.006 (2)
C56	0.052 (2)	0.051 (2)	0.0305 (17)	-0.0151 (16)	0.0235 (17)	-0.0018 (15)
C57	0.053 (2)	0.0337 (16)	0.0347 (17)	-0.0107 (14)	0.0294 (17)	-0.0064 (14)
C58	0.0423 (17)	0.0268 (14)	0.0285 (15)	-0.0020 (12)	0.0248 (14)	0.0015 (12)
C61	0.064 (3)	0.118 (4)	0.039 (2)	0.026 (3)	0.015 (2)	-0.011 (3)
C62	0.080 (4)	0.124 (5)	0.062 (3)	0.056 (3)	0.014 (3)	-0.027 (3)
C63	0.049 (2)	0.065 (3)	0.057 (2)	0.0072 (19)	0.027 (2)	0.011 (2)
C64	0.058 (3)	0.081 (3)	0.061 (3)	0.027 (2)	0.042 (2)	0.027 (2)

Geometric parameters (Å, °)

V1—N1 ⁱ	2.188 (2)	C31—C32	1.404 (4)
V1—N1	2.188 (2)	C32—C33	1.386 (4)
V1—S1 ⁱ	2.4161 (6)	C32—H32A	0.9300
V1—S1	2.4161 (6)	C33—C34	1.391 (4)
V1—S2	2.4617 (7)	C33—C37	1.508 (4)
V1—S2 ⁱ	2.4617 (7)	C34—C35	1.378 (4)
Si1—N1	1.788 (2)	C34—H34A	0.9300
Si1—C21	1.855 (3)	C35—C36	1.395 (4)
Si1—C11	1.868 (3)	С35—Н35А	0.9300
Si1—C31	1.874 (3)	С37—Н37А	0.9600
S1—C16	1.767 (3)	С37—Н37В	0.9600
S2—C26	1.771 (3)	С37—Н37С	0.9600
S3—C36	1.768 (3)	C41—C42	1.498 (4)
S3—C42	1.781 (3)	C41—H41A	0.9600

N1—C42	1.292 (3)	C41—H41B	0.9600
N2—C58	1.516 (3)	C41—H41C	0.9600
N2—C58 ⁱⁱ	1.516 (3)	C51—C52	1.518 (4)
N2—C54	1.532 (3)	C51—H51A	0.9600
N2—C54 ⁱⁱ	1.532 (3)	C51—H51B	0.9600
N3—C62	1.148 (6)	С51—Н51С	0.9600
N4—C64	1.131 (5)	C52—C53	1.515 (4)
C11—C12	1.404 (4)	С52—Н52А	0.9700
C11—C16	1.407 (4)	С52—Н52В	0.9700
C12—C13	1.390 (4)	C53—C54	1.522 (4)
C12—H12A	0.9300	С53—Н53А	0.9700
C13—C14	1.400 (4)	С53—Н53В	0.9700
C13—C17	1.511 (4)	C54—H54A	0.9700
C14—C15	1.386 (4)	C54—H54B	0.9700
C14—H14A	0.9300	C55—C56	1.482 (5)
C15—C16	1.402 (4)	С55—Н55А	0.9600
C15—H15A	0.9300	С55—Н55В	0.9600
C17—H17A	0.9600	С55—Н55С	0.9600
С17—Н17В	0.9600	C56—C57	1.515 (4)
С17—Н17С	0.9600	С56—Н56А	0.9700
C21—C22	1.399 (4)	С56—Н56В	0.9700
C21—C26	1.407 (4)	C57—C58	1.520 (4)
C22—C23	1.395 (4)	С57—Н57А	0.9700
C22—H22A	0.9300	С57—Н57В	0.9700
C23—C24	1.387 (4)	C58—H58A	0.9700
C23—C27	1.504 (4)	C58—H58B	0.9700
C24—C25	1.389 (4)	C61—C62	1.413 (7)
C24—H24A	0.9300	C61—H61A	0.9600
C25—C26	1.393 (4)	C61—H61B	0.9600
C25—H25A	0.9300	C61—H61C	0.9600
С27—Н27А	0.9600	C63—C64	1.404 (5)
С27—Н27В	0.9600	С63—Н63А	0.9600
С27—Н27С	0.9600	С63—Н63В	0.9600
C31—C36	1.393 (4)	С63—Н63С	0.9600
N1 ⁱ —V1—N1	180.0	C32—C33—C37	121.5 (3)
$N1^{i}$ V1 $- S1^{i}$	86.54 (6)	C34—C33—C37	120.8 (3)
N1-V1-S1 ⁱ	93.46 (6)	C35—C34—C33	121.1 (3)
N1 ⁱ —V1—S1	93.46 (6)	C35—C34—H34A	119.4
N1—V1—S1	86.54 (6)	C33—C34—H34A	119.4
S1 ⁱ —V1—S1	180.0	C34—C35—C36	119.7 (3)
N1 ⁱ —V1—S2	90.53 (6)	C34—C35—H35A	120.1
N1—V1—S2	89.47 (6)	С36—С35—Н35А	120.1
S1 ⁱ —V1—S2	81.86 (2)	C31—C36—C35	121.5 (3)
S1—V1—S2	98.14 (2)	C31—C36—S3	123.2 (2)
$N1^{i}$ — $V1$ — $S2^{i}$	89.47 (6)	C35—C36—S3	115.2 (2)
N1—V1—S2 ⁱ	90.53 (6)	С33—С37—Н37А	109.5

S1 ⁱ —V1—S2 ⁱ	98.14 (2)	С33—С37—Н37В	109.5
S1—V1—S2 ⁱ	81.86 (2)	H37A—C37—H37B	109.5
S2—V1—S2 ⁱ	180.0	С33—С37—Н37С	109.5
N1—Si1—C21	103.98 (11)	H37A—C37—H37C	109.5
N1—Si1—C11	119.77 (11)	H37B—C37—H37C	109.5
C21—Si1—C11	107.92 (12)	C42—C41—H41A	109.5
N1—Si1—C31	106.07 (11)	C42—C41—H41B	109.5
C21—Si1—C31	110.86 (12)	H41A—C41—H41B	109.5
C11—Si1—C31	108.12 (12)	C42—C41—H41C	109.5
C16—S1—V1	109.28 (8)	H41A—C41—H41C	109.5
C26—S2—V1	117.31 (9)	H41B—C41—H41C	109.5
C36—S3—C42	107.89 (13)	N1—C42—C41	126.0 (2)
C42—N1—Si1	121.20 (19)	N1—C42—S3	127.1 (2)
C42—N1—V1	127.58 (18)	C41—C42—S3	106.85 (19)
Si1—N1—V1	109.60 (11)	C52—C51—H51A	109.5
C58—N2—C58 ⁱⁱ	110.3 (3)	С52—С51—Н51В	109.5
C58—N2—C54	107.73 (15)	H51A—C51—H51B	109.5
C58 ⁱⁱ —N2—C54	111.25 (15)	C52—C51—H51C	109.5
C58—N2—C54 ⁱⁱ	111.25 (15)	H51A—C51—H51C	109.5
C58 ⁱⁱ —N2—C54 ⁱⁱ	107.73 (15)	H51B—C51—H51C	109.5
C54—N2—C54 ⁱⁱ	108.6 (3)	C53—C52—C51	112.2 (3)
C12—C11—C16	118.1 (2)	С53—С52—Н52А	109.2
C12—C11—Si1	115.51 (19)	C51—C52—H52A	109.2
C16—C11—Si1	126.4 (2)	С53—С52—Н52В	109.2
C13—C12—C11	123.3 (3)	С51—С52—Н52В	109.2
C13—C12—H12A	118.4	H52A—C52—H52B	107.9
C11—C12—H12A	118.4	C52—C53—C54	111.3 (2)
C12—C13—C14	117.4 (3)	С52—С53—Н53А	109.4
C12—C13—C17	121.0 (3)	С54—С53—Н53А	109.4
C14—C13—C17	121.5 (3)	С52—С53—Н53В	109.4
C15-C14-C13	120.8 (3)	С54—С53—Н53В	109.4
C15—C14—H14A	119.6	H53A—C53—H53B	108.0
C13—C14—H14A	119.6	C53—C54—N2	114.9 (2)
C14—C15—C16	121.3 (3)	С53—С54—Н54А	108.5
C14—C15—H15A	119.3	N2—C54—H54A	108.5
C16—C15—H15A	119.3	С53—С54—Н54В	108.5
C15-C16-C11	119.1 (3)	N2—C54—H54B	108.5
C15—C16—S1	120.1 (2)	H54A—C54—H54B	107.5
C11—C16—S1	120.8 (2)	С56—С55—Н55А	109.5
С13—С17—Н17А	109.5	С56—С55—Н55В	109.5
С13—С17—Н17В	109.5	H55A—C55—H55B	109.5
H17A—C17—H17B	109.5	С56—С55—Н55С	109.5
С13—С17—Н17С	109.5	H55A—C55—H55C	109.5
H17A—C17—H17C	109.5	H55B—C55—H55C	109.5
H17B—C17—H17C	109.5	C55—C56—C57	113.2 (3)
C22—C21—C26	119.2 (2)	С55—С56—Н56А	108.9
C22—C21—Si1	124.8 (2)	С57—С56—Н56А	108.9

C26—C21—Si1	115.95 (19)	С55—С56—Н56В	108.9
C23—C22—C21	121.8 (3)	С57—С56—Н56В	108.9
C23—C22—H22A	119.1	Н56А—С56—Н56В	107.7
C21—C22—H22A	119.1	C56—C57—C58	111.3 (3)
C24—C23—C22	118.0 (3)	С56—С57—Н57А	109.4
C24—C23—C27	121.5 (3)	С58—С57—Н57А	109.4
C22—C23—C27	120.5 (3)	С56—С57—Н57В	109.4
C23—C24—C25	121.4 (3)	С58—С57—Н57В	109.4
C23—C24—H24A	119.3	Н57А—С57—Н57В	108.0
C25—C24—H24A	119.3	N2	113.0 (2)
C24—C25—C26	120.6 (3)	N2	109.0
C24—C25—H25A	119.7	C57—C58—H58A	109.0
С26—С25—Н25А	119.7	N2	109.0
C25—C26—C21	119.0 (2)	С57—С58—Н58В	109.0
C25—C26—S2	119.4 (2)	H58A—C58—H58B	107.8
C21—C26—S2	121.55 (19)	С62—С61—Н61А	109.5
С23—С27—Н27А	109.5	С62—С61—Н61В	109.5
С23—С27—Н27В	109.5	H61A—C61—H61B	109.5
H27A—C27—H27B	109.5	С62—С61—Н61С	109.5
С23—С27—Н27С	109.5	H61A—C61—H61C	109.5
H27A—C27—H27C	109.5	H61B—C61—H61C	109.5
H27B—C27—H27C	109.5	N3—C62—C61	176.4 (9)
C36—C31—C32	116.4 (2)	С64—С63—Н63А	109.5
C36—C31—Si1	119.8 (2)	С64—С63—Н63В	109.5
C32—C31—Si1	123.7 (2)	Н63А—С63—Н63В	109.5
C33—C32—C31	123.5 (3)	С64—С63—Н63С	109.5
С33—С32—Н32А	118.3	H63A—C63—H63C	109.5
C31—C32—H32A	118.3	H63B—C63—H63C	109.5
C32—C33—C34	117.7 (3)	N4—C64—C63	178.3 (5)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, y, -z+1/2.

Fig. 1

Fig. 2

